本合集包含了不等式,圓,雙曲線等為主的課文高二數(shù)學(xué)教案,掌握圓的一般式方程及其各系數(shù)的幾何特征。
本節(jié)課的核心是培養(yǎng)學(xué)生的變形技能,訓(xùn)練學(xué)生的推理能力.為今后證明不等式、解不等式的學(xué)習(xí)奠定技能上和理論上的基礎(chǔ).
合集中的教案具體包括
1 不等式的性質(zhì)
2 圓的方程
3 雙曲線的幾何性質(zhì)
教案舉例
§8.4雙曲線的幾何性質(zhì)(第1課時)
㈠課時目標
1.熟悉雙曲線的幾何性質(zhì)。
2.能理解離心率的大小對雙曲線形狀的影響。
3.能運用雙曲線的幾何性質(zhì)或圖形特征,確定焦點的位置,會求雙曲線的標準方程。
㈡教學(xué)過程
[情景設(shè)置]
敘述橢圓的幾何性質(zhì),并填寫下表:
方程
性質(zhì)
圖像(略)
范圍-a≤x≤a,-b≤y≤b
對稱性對稱軸、對稱中心
頂點(±a,0)、(±b,0)
離心率e=(幾何意義)
[探索研究]
1.類比橢圓的幾何性質(zhì),探討雙曲線的幾何性質(zhì):范圍、對稱性、頂點、離心率。
雙曲線的實軸、虛軸、實半軸長、虛半軸長及離心率的定義。
雙曲線與橢圓的幾何性質(zhì)對比如下:
方程
性質(zhì)
圖像(略)(略)
范圍-a≤x≤a,-b≤y≤bx≥a,或x≤-a,y∈R
對稱性、對稱軸、對稱中心 對稱軸、對稱中心
頂點 (±a,0)、(±b,0) (-a,0)、(a,0)
離心率 0<e=<1
e=>1
下面繼續(xù)研究離心率的幾何意義:
(a、b、c、e關(guān)系:c2=a2+b2, e=>1)
2.漸近線的發(fā)現(xiàn)與論證
根據(jù)橢圓的上述四個性質(zhì),能較為準確地把 畫出來嗎?(能)
根據(jù)上述雙曲線的四個性質(zhì),能較為準確地把 畫出來嗎?(不能)
通過列表描點,能把雙曲線的頂點及附近的點,比較精確地畫出來,但雙曲線向何處伸展就不很清楚。
我們能較為準確地畫出曲線y=,這是為什么?(因為當雙曲線伸向遠處時,它與x軸、y軸無限接近)此時,x軸、y軸叫做曲線y=的漸近線。
問:雙曲線 有沒有漸近線呢?若有,又該是怎樣的直線呢?
引導(dǎo)猜想:在研究雙曲線的范圍時,由雙曲線的標準方程可解出:
y=± =±
當x無限增大時, 就無限趨近于零,也就是說,這是雙曲線y=±
與直線y=± 無限接近。
這使我們猜想直線y=± 為雙曲線的漸近線。
直線y=± 恰好是過實軸端點A1、A2,虛軸端點B1、B2,作平行于坐標軸的直線x=±a, y=±b所成的矩形的兩條對角線,那么,如何證明雙曲線上的點沿曲線向遠處運動時,與漸近線越來越接近呢?顯然,只要考慮第一象限即可。
證法1:如圖,設(shè)M(x0,y0)為第一象限內(nèi)雙曲線 上的仍一點,則
y0= ,M(x0,y0)到漸近線ay-bx=0的距離為:
∣MQ∣= =
點M向遠處運動, x0隨著增大,∣MQ∣就逐漸減小,M點就無限接近于 y=
故把y=± 叫做雙曲線 的漸近線。
3.離心率的幾何意義
∵e=,c>a, ∴e>1由等式c2-a2=b2,可得 ===
e越。ń咏1) 越接近于0,雙曲線開口越。ū猹M)
e越大 越大,雙曲線開口越大(開闊)
4.鞏固練習(xí)
求下列雙曲線的漸近線方程,并畫出雙曲線。
①4x2-y2=4 ②4x2-y2=-4
已知雙曲線的漸近線方程為x±2y=0,分別求出過以下各點的雙曲線方程
①M(4, ) ②M(4, )
[知識應(yīng)用與解題研究]
例 1 求雙曲線9y2-16x2=144的實半軸長和虛半軸長、焦點坐標、離心率、漸近線方程。
例2 雙曲線型自然通風塔的外形,是雙曲線的一部分繞其虛軸旋轉(zhuǎn)而成的曲面,如圖;它的最小半徑為12m,上口半徑為13m,下口半徑為25m,高為55m,選擇適當?shù)淖鴺讼,求出此雙曲線的方程(精確到1m)
㈣提煉總結(jié)
1. 雙曲線的幾何性質(zhì)及a、b、c、e的關(guān)系。
2. 漸近線是雙曲線特有的性質(zhì),其發(fā)現(xiàn)證明蘊含了重要的數(shù)學(xué)思想與數(shù)學(xué)方法。
3. 雙曲線的幾何性質(zhì)與橢圓的幾何性質(zhì)類似點和不同點。